Live reports from the soil grain – the promise and challenge of microbiosensors

Daniel J. Gage¹, Patrick M. Herron², Catalina Arango Pinedo¹ and Zoe G. Cardon*²,³

¹Department of Molecular and Cell Biology, ²Department of Ecology and Evolutionary Biology and ³Center for Integrative Geosciences, University of Connecticut, 354 Mansfield Road, U-2045, Storrs, Connecticut 06269, USA

Summary

1. Linking microbial activity with ecosystem function is a continuing goal among ecologists focusing their efforts below ground in terrestrial ecosystems.
2. Genomic approaches, using DNA and RNA extracted from soil to characterize types of microbes present and genes expressed in soil, are promising, but, the required destructive harvest confounds spatial and temporal information.
3. Microbiosensors offer a gene-based way to examine microbial perception of, and response to, the soil environment non-destructively, with high spatial and temporal resolution.
4. In this mini-review, we explore the promise, challenges and tradeoffs associated with the design and deployment of microbiosensors in soil, as well as the interpretation of information derived from them ‘live from the soil grain’. Both the promises and challenges are caused by the facts that: microbial biosensors are living organisms with specific traits; they come from a phylogenetically diverse but restricted subsample of enormous soil microbial diversity; they are responsive to internal and external influences on multiple cellular processes (not just promoter induction); and they become part of food chains in non-sterile soils. We examine each of these characteristics, and associated blessings and curses, in the context of using microbiosensors to explore microbial soil ecology.

Key-words: GFP, lux, reporter gene, soil microbial ecology

Introduction

Soil biogeochemical functions, many of which are driven in large part by microbes, are a major focus of ecosystems research today. Community genomic approaches seeking to link microbial community structure and ecosystem function are developing rapidly, and should contribute to understanding of taxonomic and functional biodiversity belowground (Cardon & Gage 2006). However, techniques currently used to extract DNA and RNA from soil destroy small-scale spatial and temporal information, and that spatial and temporal micro-heterogeneity in soils is increasingly suspected to be a dominant influence on microbial distribution and biogeochemical function (e.g. Young & Ritz 1998; Schimel & Bennett 2004; Crawford et al. 2005). A complementary approach, capable of non-destructively imparting an in situ microbial perspective – ‘live, from the soil grain’ – is offered by genetically engineered microbiosensors.

Like many sensors (living or non-living) arrayed in a focal environment, microbiosensors can provide spatial information about local resource availability or environmental conditions over time. Individual microbiosensors can operate at μm and mm scales in intact, non-sterile soil, scales that previously have not been readily open to empirical investigation. Several recent reviews have considered uses, strengths and limitations of microbiosensors, from multiple perspectives (Daunert et al. 2000; Hansen & Sørensen 2001; Leveau & Lindow 2002; Cardon & Gage 2006). Building on this discussion, we first note several interesting ideas and questions in ecosystems ecology to which microbiosensors can likely contribute useful information, followed by very brief snapshots of information about the soil environment already gleaned using developed sensors. We then step through a series of microbiosensor traits that can be viewed simultaneously as strengths and weaknesses of using microbiosensors to explore soil ecology. Though these living sensors provide a unique way to explore the microenvironments they inhabit, there are trade-offs and limitations to be considered when designing them, when drafting questions that they can help answer, and when interpreting the resulting data.

How might microbiosensors contribute toward understanding ecosystem function?

Answering this question requires a description of what microbiosensors are. Briefly, microbiosensors are living microbes
(usually bacteria) that have been genetically engineered to express reporter genes either continuously (constitutively) or in response to a stimulus of interest. Expressed reporter genes code for any one of a number of proteins (described in more detail below), some providing visible signals in situ that can be imaged continuously at low or high spatial resolution, depending on whether individual bacteria’s brightness or the brightness of populations of bacteria in soil are of interest. The bacteria to be engineered can be well-characterized lab strains, or they can also be bacteria isolated from the soil of interest, engineered with a plasmid, and then returned to soil. As we discuss further later, the bacteria must be genetically tractable and culturable, narrowing the field of potential native soil bacteria considerably. But, still, candidate species for isolation and engineering could include e.g. native Pseudomonas, Acinetobacter, and Bacillus species known to be metabolically quite versatile.

Do genetically engineered bacteria behave exactly as their native microbial brethren do in soil? Not necessarily, but they are not necessarily meant to. They are meant to be sensors of an appropriate physical scale to be introduced into the soil environment to explore ideas and mechanistic hypotheses posed at that scale. A short, current list of microbiosensor studies that could contribute to current questions about ecosystem function might include:

- Soil hotspots (microsites) supporting high mineralization rates, potentially with high ammonium or perhaps even nitrate availability, are hypothesized to be important for availability of nutrients to plant roots (Schimel & Bennett 2004). Detecting and imaging such hotspots through time at mm (or μm) root-appropriate scales, using e.g. already-developed nitrate-sensitive microbiosensors (DeAngelis et al. 2005), would enable comparisons of the dynamics of appearance and disappearance of such hotspots in situ with known dynamics of upregulation of nutrient uptake by roots and/or observed root extension.

- Arbuscular mycorrhizas are thought to be much less capable of producing exoenzymes necessary for decomposition of organic compounds (and thus saprophytism) than ecto- or ericoid mycorrhizas (Read & Perez-Moreno 2003; Cardon & Gage 2006). However, whether AM hyphae in soil are capable of stimulating the activities of heterotrophic or saprotrophic bacteria directly around them in the soil matrix, either through signalling or provision of resources, remains unclear (reviewed by Jones, Hodge & Kuzyakov 2004). Imaging reporter gene expression from sugar- or energy-sensitive microbiosensors established in soil (e.g. Jaeger et al. 1999; Bringhamst, Cardon & Gage 2001; Herron 2007) during and after AM hyphae extension into the soil volume, would provide an in situ, non-destructive testbed for the idea that hyphae may stimulate bacterial activity around them via provision of carbon-based resources.

- Temporal patterns of carbon allocation from shoot to root are well-known for many plant species in agricultural and silvicultural literatures (e.g. Cardon et al. 2002), and modelling even of large-scale ecosystem fluxes such as respiration can be noticeably improved with the inclusion of such plant phenology. Do those allocation patterns necessarily translate directly into parallel temporal patterns of carbon ‘loss’ from roots to rhizosphere soil (Herron, 2007)? Or can plants uncouple the two fluxes in time? Again, carbon- or energy-sensitive microbiosensors established directly around plant roots in the rhizosphere (e.g. Bringhamst et al. 2001; Herron 2007) enable testing of this idea in situ, without destructive harvest, along with explorations of whether that coupling can shift as, for example, plants experience a glut of CO₂ under high CO₂ conditions.

Though the development of microbiosensors has been a challenging road linking microbiology, ecology, and environmental engineering, there are now well-characterized and well-tested microbiosensors that can be more widely deployed to answer ecological questions, guided by mechanistic or mathematical hypotheses like those listed above. Below, we briefly note a handful of examples where microbiosensors have already provided insight into patterns of resource availability in soil, plant-microbe interactions, and microbe-microbe interactions. Then, we discuss the dual nature of microbiosensors – they are used as sensors at microscales, and they are living organisms, leading to a number of paired strengths and weaknesses that we explore in sequence.

What kinds of information have microbiosensors already provided?

As noted above, microbiosensors express reporter genes either constitutively or in response to a stimulus. In the latter case, expression of the reporter gene is commonly under the control of a promoter known to respond to a specific resource or condition of interest in soil. Examples where such microbiosensors have provided insight into plant/microbe interactions, insight that would have been very hard to gain with other commonly used research techniques, include:

- A microbiosensor induced by nitrate availability (DeAngelis et al. 2005) detected lower levels of nitrate in the rhizosphere of oat roots, compared with nearby bulk soil, presumably reflecting root uptake of nitrate. That proven ability to detect differences in nitrate concentration at micro-scales bodes well for the potential to detect variations in microbes nitrate availability discussed in the previous section.

- Two microbiosensors, induced by sucrose and tryptophan availability; respectively, illustrated that sucrose was released predominantly from near the tips of oat roots, whereas tryptophan was released predominantly from older root tissue (Jaeger et al. 1999), providing insight into the potential for the bathing of resident soil microbial populations with a sequence of nutritionally very distinct compounds when roots extend through bulk soil.

- A microbiosensor induced by galactosides (Bringhamst et al. 2001) showed that alfalfa roots secrete galactosides in a patchy fashion, especially around sites of lateral root initiation, but not at root tips. The concentrations of...
secreted galactosides fell off very sharply with radial distance into soil from the root axis, because of diffusion limitations, consumption by microbes, or both.

- A microbiosensor induced by low water potential and originally designed for use on leaf surfaces (Axtell & Beattie 2002) documented the spatial patterns of soil drying correlated with differential water uptake by mature and immature zones of corn roots (Herron 2007). Empirical measurements of soil water potential at such small scales have previously been impossible, though for decades there have been single-root models describing dynamics and spatial distributions of water potentials at mm scales around plant roots (e.g. Hillel 1998). Such models can now be tested against empirical data.

- Finally, a microbiosensor sensitive to N-acyl homoserine lactones (AHLs) known to control quorum sensing indicated that AHLs were increased in rhizosphere soil relative to bulk soil (DeAngelis, Firestone & Lindow 2007), suggesting that induction of some rhizosphere processes (e.g. production of exoenzymes) may be linked to build up of AHL-producing bacterial populations or communities.

A number of microbiosensors have also been constructed to detect pollutants such as VOCs (volatile organic compounds) and heavy metals. These are thoroughly reviewed in Hansen & Sørensen 2001 and Daunert et al. 2000, and more examples are provided in Cardon & Gage 2006.

Upon induction by an environmental resource or condition of interest, the selected promoter drives transcription of the reporter gene, producing a detectable signal by one of a number of methods. Some reporter proteins are fluorescent, including green fluorescence protein (GFP) and red fluorescence protein (RFP), enabling in situ detection in soil by epifluorescence microscopy. Other reporter genes, e.g. the bacterial lux genes, produce proteins that can generate bioluminescence (Rattray et al. 1995; Levenza et al. 2005). Light produced in situ by induced lux-containing reporters can be detected non-destructively using a lens (microscope or standard 35-mm camera lens) connected to a sensitive CCD camera. Other reporter genes code for proteins that require destructive harvest for their assay, e.g. the β-galactosidase (lacZ) genes and ice nucleation (inaZ) genes. The drawback of destructive harvest required by these latter two reporter genes is often outweighed by the well-known reliability of the reporter system (lacZ), or the built-in amplification of detectable ice nucleating activity associated with inaZ expression. These and other reporter genes and proteins have been thoroughly reviewed elsewhere (Daunert et al. 2000; Hansen & Sørensen 2001; Leveau & Lindow 2002; Cardon & Gage 2006).

Paired promise and challenge in living microbiosensors

MICROBIOSENSORS ARE ALIVE

The very traits that make microbiosensors exciting tools for exploring soil environments are traits that also challenge researchers as they interpret information provided by the biosensors. First and foremost, microbiosensors are not electrical sensors; they are living microbes, reporting on environmental conditions or resource availabilities that are relevant to them. Relevance, however, varies organism to organism, and in the extreme, one microbe’s substrate could be another microbe’s toxin. As Leveau & Lindow (2002) point out, the production of reporter output (protein, light, etc.) depends not only on the presence of the stimulus of interest but also on the availability of energy, nutrients and appropriate conditions for the specific microbiosensors to operate. If those resources and conditions are not present in the environmental sites hosting microbiosensors, those sites are ‘not permissive’, and no report molecule will be produced, even if inducing stimuli are present. This is a large problem when the microbial microenvironment is heterogeneous, and poorly understood, as in soil. The problem might be at least minimized by preferentially deploying microbiosensors under conditions where, based on our best knowledge of soil characteristics, they could thrive, e.g. in the rhizosphere where carbon is not limiting. One way to partially alleviate the problem of knowing if an environment can support activity of biosensors is by deploying them in pairs in which one biosensor constitutively expresses a reporter and the other, co-inoculated biosensor contains an inducible reporter that indicates the microbial perception of the resource availabilities, environmental conditions, or physiological states of interest (Ramos, Molbak & Molin 2000; Boldt et al. 2004; DeAngelis et al. 2005). Expression of both constitutive and inducible genes in a particular location indicates that bacteria are active and have seen inducer. Expression of the constitutive reporter and no expression from the inducible reporter in a particular location indicate that conditions for expression are generally permissive, but signal for the inducible reporter is absent. In a more sophisticated implementation of this idea, single microbiosensors strains could be engineered to doubly report on bacterial activity and the signal of interest using constitutive and inducible reporter genes that can be independently and simultaneously monitored. Such a system was used by DeAngelis et al. (2005) to investigate nitrate availability in the rhizosphere.

MICROBIOSENSORS NEED TO BE CULTURABLE AND GENETICALLY TRACTABLE

Another essential characteristic for a microbial strain to be used as a microbiosensor is that the strain be culturable, genetically tractable and able to thrive under the conditions of interest. There are many microbes that do not fit this requirement, and among them are some that are of particular interest to those striving to link microbial activity with ecosystem function. For example, ammonia oxidation in soil is catalyzed by AmoA in bacteria from genetically intractable *Nitrosomonas* and *Nitrosospira*. The tremendous biodiversity among microbes discovered using techniques that do not require culturing (Horner-Devine, Carney & Bohannan 2004; Kassen & Rainey 2004) emphasizes that a very small subset are being
used as microbiosensors. Yet, researchers understandably hope that the bioreporters in use, and derived from commonly engineered species, will provide a microbial ‘point of view’ of the environment that is in at least some ways generalizable. Basic familiarity with the biology of the microbiosensor strain is essential, and, fortunately, common microbiosensor strains such as various Pseudomonas sp., Bacillus sp. S. meliloti, E. coli, and Erwinia herbicola have been extensively studied and some of their individual tricks and talents recognized. For example, the ability of S. meliloti to take up and use the large and small α-galactosides commonly released from legume seeds argued for its use as a rhizosphere galactoside sensor in soil microcosms (Bringhurst et al. 2001).

THE GENETIC BACKGROUND OF MICROBIOSENSORS CAN INFLUENCE THEIR ABILITY TO RESPOND TO ENVIRONMENTAL SIGNALS OF INTEREST

Matching of biosensor strains to the question at hand is essential, and a component of that exercise is considering whether the selected promoter is sensitive to the stimulus of interest and whether it will function in the microbiosensor background where it is inserted. Though the diversity of microbiosensor strains is minuscule compared with the diversity of soil micro-organisms, microbiosensor biological diversity is still substantial enough that a promoter taken from one bacterium may not function well in another. We have observed, for example, that the E. coli proU promoter moved by Axtell & Beattie (2002) into the related, leaf-dwelling, bacterium Pantoea agglomerans functions nicely there and provides inducible activity in the face of changes in water potential in the environment. Yet the same promoter moved into the more distantly related soil bacterium Pseudomonas putida has much less activity (Herron 2007).

REPORTER GENE EXPRESSION IS A FUNCTION OF MORE THAN JUST STIMULUS INTENSITY AND DYNAMICS

In a microbiosensor the specificity for a particular stimulus and the ‘shape’ and timing of its response depend on the promoter, the reporter gene and the host biosensor cell. Clearly, a new microbiosensor’s response characteristics must be carefully examined under controlled conditions prior to deployment in a complex environment. Those controlled conditions should reflect what is known about the substrates and conditions likely to be experienced by the microbiosensors, as well as their dynamics. It may happen that the reporter gene is expressed in the presence of compounds closely (or not so closely) related to the target stimuli. The melA promoter used in Bringhurst et al. 2001, for instance, which drives expression of an α-galactosidase utilization operon in S. meliloti, is also induced to some degree by certain β-galactosides and by galactose (Gage & Long 1998). As a counter-example, the ara promoter of E. coli has been reported to be induced in a highly specific fashion by arabinose (Daunert et al. 2000).

Sometimes, reporter output may be absent even if the inducing conditions are present. One of these cases may be, as mentioned above, the lack of permissive conditions in the microbe’s environment. But this is not the only case. The host micro-organism may not recognize the promoter driving the reporter, or response to the stimulus may vary from one host to the other one, or from one environmental condition to another. Herron (2007) found, for example, that in liquid culture, the expression of GFP under the control of the proU promoter in Pantoea agglomerans was dramatically changed depending on the carbon substrate (succinate or glucose) provided for growth. Though GFP fluorescence scaled with osmotic potential when either carbon source was present, the scaling was much stronger (the gain in sensor output was much higher) when it was grown in glucose. The same promotor-reporter construct in Pseudomonas putida behaved very differently. GFP fluorescence was overall much lower, and scaling of fluorescence was not influenced by the carbon source (Herron 2007). The problem of inherent variability in expression could be further understood if preliminary characterization of biosensors included studies of variability at the single cell level done in parallel with standard, culture-level, expression studies.

Another interesting example of variability in reporting is stochastic gene expression, which may produce heterogeneity of output within a population of microbiosensors (Kaern et al. 2005). Stochasticity results from intrinsic cell-to-cell variability in regulatory factors or in the levels or activity of information-processing proteins. Thus, individual cells in the population, under the same environmental conditions and the same stimulus intensity, can exhibit different output responses. This characteristic may pose a challenge if the response is being recorded at the scale of individual cells, as opposed to being recorded as the aggregate response of many cells measured simultaneously.

Another consideration is whether the promoter drives reporter expression in an ‘all or none’ fashion, or conversely, in a smoothly graded fashion. Promoters in their native settings are often subject to the control of regulatory systems that involve feedback. Positive feedback can greatly amplify small differences, creating essentially an on/off switch (Csete & Doyle 2002; Dubnau & Losick 2006). Morgan-Kiss, Wadler & Cronan (2002) suggest that most bacterial expression systems exhibit such ‘all-or-nothing’ induction. What does this mean in practice, when tracking individual biosensors in the rhizosphere? It means that if the population of biosensors displays such dynamics it will be divided in two groups: one will exhibit the maximum level of expression, whereas the other will not express the reporter signal at all. As the concentration of stimulus increases, a higher proportion of the population turns its switch to the ‘on’ position, until a threshold is reached at which point all cells emit at their maximum output. Thus, in cases of all-or-nothing responses the strength of the stimulus will be reflected in the ratio of induced to uninduced cells, rather than in the intensity of the response in individual cells. Classical examples of on/off switches are the lac and the ara operons in E. coli (Novick &
Weiner 1957; Khlebnikov et al. 2000). In both operons the promoter is induced by a specific molecule (lactose or arabinose), driving the expression of proteins that transport the inducer into the cell. Response to the stimulus (expression of the transport genes) results in a greater capacity for transport of that same stimulus, sending the response into an upward spiral. The outcome is an all-or-nothing response.

Often catabolic genes encoding proteins that degrade the inducer are also under control of the promoter of interest. The presence of these genes may dampen the regulation by lowering the intracellular concentration of the inducer, leading to a graded response (Ozbudak et al. 2004). In contrast to these complicated regulatory networks, there are a few relatively simple systems that offer graded responses, such as those that regulate tetracycline resistance (tetA) and the porin proteins (ompF and ompC) in E. coli (Batchelor, Silhavy & Goulian 2004).

The inherent complexity of the regulatory circuits that control promoter expression may initially seem to complicate design of the experiments greatly. However, once such idiosyncrasies are identified, characteristics of reporter expression can then be factored into the plan for inoculating bacteria into the environment and interpreting output. Moreover, the presence of many players regulating promoter activity allows for great versatility and flexibility in the engineering of biosensing systems by means of ‘choosing and picking’ which elements of the regulatory circuit are included (Haseltine & Arnold 2008). For instance, an on/off ‘promoter switch’ can be converted into a graded-response system by introducing it into a host that lacks some of the regulatory components or by placing the transport genes under the control of an independent promoter (Khlebnikov et al. 2000). Similarly, a graded response system may be turned into an on/off one by induction with a ‘gratuitous’ inducer, one that is not metabolized by the cell (Smits, Kuipers & Veening 2006).

The system may even be engineered to produce a step response (Daunert et al. 2000; Haseltine & Arnold 2008). The threshold for induction may be manipulated by inclusion or removal of catabolic genes or by incorporation of an activator that responds to a different external stimulus (Daunert et al. 2000; Morgan-Kiss et al. 2002; Ozbudak et al. 2004).

These variations in promoter expression patterns can be manipulated to answer specific questions. The lac promoter can behave as a constitutive promoter in the absence of its repessor, and as such it is used for constitutively labelling cells (Wright & Beattie 2004). This characteristic has also been exploited to report on horizontal gene transfer in the environment, when the donor cells possess a tight repessor and the recipient cells do not (Normander et al. 1998). Undetectable signal from low levels of a stimulus, or from low-level gene expression, may be amplified by making the response all-or-nothing and inheritable, such that a single induced cell will give rise to a myriad of descendants that are fully induced (Casavant et al. 2002).

Clearly it should not be assumed that expression of the reporter gene is a perfect reflection of promoter activity. Leveau & Lindow (2001) illustrate this with a simple model incorporating steps from promoter activation to folding of GFP into its mature fluorescent form in a hypothetical microbiosensor cell. Figure 1 illustrates the point. Though a stimulus may directly affect promoter activity, other physiological and cellular characteristics also influence the final concentration of GFP per cell. Immature GFP is made after the promoter is induced and mRNA is transcribed, and it has several potential fates (Fig. 1). Some is degraded; some matures to visible GFP. If and when the cell divides, the pools of GFP are divided into the daughter cells, instantaneously reducing the cellular content by half. Fluorescence of mature GFP per cell is thus a complex function of all these simultaneous processes, as well as a function of variations in promoter activity in response to signal.

Figure 1 also hints at a final point. The researcher’s eye more easily sees green fluorescent protein, potentially biasing against detection of biosensor cells that are not induced (e.g. Leveau & Lindow 2002). Not only is it very important to make sure that if there is a signal it will be detected and interpreted correctly, it also is very important to use methods discussed earlier to insure that both induced and uninduced sensors are tracked.

THE BLESSING AND CURSE OF CELL DIVISION

As suggested in Fig. 1, the physiological complexity potentially muddying the correspondence between GFP content per cell and stimulus intensity can also be viewed as an opportunity. Long-lived GFP molecules are useful in soil,
where it can be extremely difficult to see fluorescence from green fluorescent protein. By using the long-lived variant of GFP, there is better opportunity to detect a GFP signal from cells because it is brighter. A number of GFP variants with different turnover times are available for use as reporter molecules (Andersen et al. 1998), and fast-turnover GFP would appear to provide a more dynamic signal that might facilitate tracking rapid changes in soil, or other complex environments. However, overall fluorescence levels of fast-turnover GFP per cell are lower. In complex environments such as soil, such diminished fluorescence could pose a significant difficulty for signal detection. On the other hand, intuitively it seems that by using a long-lived GFP molecule that builds up in cells, and does not degrade readily, the ability of the researcher to detect dynamic changes in promoter activity would be swamped out by large, permanent, pools of GFP. This problem is mentioned in Hansen & Sørenson’s (2001) review. However, it is possible to use long-lived reporter molecules to detect relatively rapid dynamics in stimuli intensity if the population of microbiosensor bacteria is growing rapidly. Referring to Fig. 1, note that if cells are dividing quickly, variations in promoter activity can be rapidly translated into detectable changes in mature GFP per cell because rapid growth and cell division continually divide the number of GFP molecules per cell. Large, permanent pools have less opportunity to build up during rapid growth. For tracking dynamics and spatial patterns of rhizosphere water potential or sugar availability, this coupling could be essential. Fortunately, the rhizosphere is known as a hotbed of microbial activity, where, unlike in bulk soil, carbon is readily available to support microbial growth. Studies of microbial growth rates in carbon-amended soil suggest that growth rates as high as one doubling per 2 h may be possible in carbon-replete zones such as might be found in the rhizosphere (Behera & Wagner 1974). Microbiosensors reporting bacterial growth rates (e.g. Ramos et al. 2000) at different zones along roots could also help guide design and interpretation of experiments, where the advantages of brightness of the overall GFP signal must be balanced with enhanced ability to detect a fluctuating GFP signal on a low fluorescence background.

CAN MICROBIOSENSORS REPORT QUANTITATIVELY IN COMPLEX ENVIRONMENTS?

Hansen & Sørenson’s (2001) review emphasizes microbiosensor function in the context of sensing specific and non-specific environmental stresses, for example sensing toxic compounds in extracts, products (e.g. media, milk), and the environment. In well-defined, homogeneous, contexts more control over the environment of the sensors can be exerted and microbiosensors’ output can sometimes be quantitatively interpreted. But in complex, heterogeneous, environments where energy sources and nutrient availabilities and conditions are not known at microbial spatial scales, exact quantitation of stimuli in situ seems doubtful. The capabilities of several microbiosensors may be required to provide an envelope in which to interpret spatial and temporal variation in microbiosensor responses in situ. The reporters mentioned by Hansen and Sørensen in which lux genes, for example, are constitutively expressed, and light production is used as an indicator of stress or lack of metabolic activity, provide an intriguing possibility for use in the microbial ecologist’s toolkit. Such an indicator of metabolic activity could be harnessed to show subtle variations in availability of e.g. energy in the environment, and perhaps provide useful information on the capacity, in general, of those microbes to respond to other stimuli measured by other reporters linked to inducible genes.

MICROBIOSENSORS ARE LUNCH

Finally, it can’t be ignored that microbiosensors are living bacteria and thus enter the food chain in non-sterile soils (Clarholm 2002; Bonkowski 2004; Cardon & Gage 2006; Moore, McCann & de Ruiter 2007). Microbiosensor population size and signal intensity decrease over time with predation, but this sobering fact can also be seen in a positive light. It is extremely difficult to examine predation in the soil environment, but protozoal grazing on brightly fluorescence-tagged bacteria is a promising way to track predation at extremely small scales, because the fluorescent proteins can continue to provide signal even after reporter bacteria are engulfed (Bringhurst et al. 2001).

Conclusion

In sum, microbiosensors provide an exciting gene-based way to probe microbial perception of local soil environments, and microbial responses to those environments, continuously and at high spatial resolution. As with all methods, there are tradeoffs associated with using microbiosensors, tradeoffs stemming from their basic biology and their diversity. Still, the promise that microbiosensors hold for orienting us to the microbial perception of the soil environment, and for revealing mechanistic themes of organismal interactions in and with soil, becomes more exciting as additional links among microbial activity, community structure, and belowground ecosystem functions are forged.

Acknowledgements

Thanks to Johan Leveau and Steven Lindow who provided the Microsoft Excel version of their mathematical model of GFP expression, and to several reviewers who guided us to a more focused manuscript. This work was supported by NSF Ecosystems grant #0415938 to Z.G.C. and D.J.G., and an U.S. EPA Science to Achieve Results (STAR) Fellowship 91633901-0 to P.M.H. This is contribution 13 from the UConn Center for Integrative Geosciences.

References

Received 19 November 2007; accepted 15 July 2008
Handling Editor: Josh Schimel
Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Author: Cardon et al. (2001) has been changed into Cardon et al. (2002) so that this citation matches the reference list. Please confirm that this is correct.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Author: Griffiths, Christensen & Bonkowski (2007) has not been found in the text. Please indicate where it should be cited or delete this reference.</td>
<td></td>
</tr>
</tbody>
</table>
Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

<table>
<thead>
<tr>
<th>Instruction to printer</th>
<th>Textual mark</th>
<th>Marginal mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave unchanged</td>
<td>• • • under matter to remain</td>
<td>🍘</td>
</tr>
<tr>
<td>Insert in text the matter indicated in the margin</td>
<td></td>
<td>🍘</td>
</tr>
<tr>
<td>Delete</td>
<td>/ through single character, rule or underline or</td>
<td>🍘</td>
</tr>
<tr>
<td>Substitute character or substitute part of one or more word(s)</td>
<td>/ through letter or</td>
<td>🍘</td>
</tr>
<tr>
<td>Change to italics</td>
<td>— under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to capitals</td>
<td>≈ ≈ ≈ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to small capitals</td>
<td>≈ ≈ ≈ ≈ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to bold type</td>
<td>≈ ≈ ≈ ≈ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to bold italic</td>
<td>≈ ≈ ≈ ≈ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to lower case</td>
<td>Encircle matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change italic to upright type</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Change bold to non-bold type</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert ‘superior’ character</td>
<td>/ through character or</td>
<td>🍘</td>
</tr>
<tr>
<td></td>
<td>🍘 where required</td>
<td></td>
</tr>
<tr>
<td>Insert ‘inferior’ character</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert full stop</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert comma</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert single quotation marks</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert double quotation marks</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert hyphen</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Start new paragraph</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>No new paragraph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close up</td>
<td>linking characters</td>
<td></td>
</tr>
<tr>
<td>Insert or substitute space</td>
<td>/ through character or</td>
<td>🍘</td>
</tr>
<tr>
<td>between characters or words</td>
<td>🍘 where required</td>
<td></td>
</tr>
<tr>
<td>Reduce space between characters or words</td>
<td>between characters or words affected</td>
<td></td>
</tr>
</tbody>
</table>