Running Head: Mechanosensitivity in plant roots

Corresponding Author: Rabi A. Musah

Address: Department of Chemistry

State University of New York at Albany

1400 Washington Avenue

Albany, NY 12222

Telephone: 518-437-3740

E-mail: rmusah@albany.edu

Research Area: Signaling and Response
Mechanosensitivity Below Ground: Touch-Sensitive Smell-Producing Roots in the “Shy Plant,” *Mimosa pudica* L.

Rabi A. Musah¹*, Ashton D. Lesiak¹, Max J. Maron¹, Robert B. Cody², David Edwards², Kristen Fowble, A. John Dane², and Michael C. Long¹

¹Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.

²JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960, USA.

*To whom correspondence may be addressed. E-mail: rmusah@albany.edu

Summary: Plant roots can exhibit a type of mechanosensitivity whereby they emit noxious organosulfur compounds in response to touch.

Author Contributions: RAM conceived of the work, designed the experiments, conducted experiments, interpreted the data and wrote the manuscript; ADL and RBC conducted mass spectrometric measurements and RBC interpreted some of the resulting data; MJM conducted GC-MS and various control experiments; DE conducted microscopy experiments; KF conducted headspace analysis experiments; AJD conducted GC-MS experiments; ML germinated plant seedlings.

Financial source: National Science Foundation grant number 1310350 to RAM and RBC.
Financial source: National Science Foundation grant number 1310350 to RAM and RBC.

Corresponding Author: Rabi A. Musah

rmusah@albany.edu
The roots of the “shy plant” *Mimosa pudica* L. emit a cocktail of small organic and inorganic sulfur compounds into the environment, including SO₂, methylsulfinic acid, pyruvic acid, lactic acid, ethanesulfinic acid, propane sulfinic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, and thioformaldehyde, an elusive and highly unstable compound never before reported to be emitted by a plant. When soil around the roots is dislodged or when seedling roots are touched, an odor is detected. The perceived odor corresponds to emission of higher amounts of propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, and phenothiazine. The mechanosensitivity response is selective. Whereas touching the roots with soil or human skin resulted in odor detection, agitating the roots with other materials such as glass did not induce a similar response. Light and electron microscopy studies of the roots revealed the presence of microscopic sac-like root protuberances. Elemental analysis of these projections by energy dispersive X-ray spectroscopy revealed them to contain higher levels of K⁺ and Cl⁻ compared to the surrounding tissue. Exposing the protuberances to stimuli that caused odor emission resulted in a reduction in the levels of K⁺ and Cl⁻ in the touched area. The mechanistic implications of the variety of sulfur compounds observed vis-à-vis the pathways for their formation are discussed.
INTRODUCTION

Plant roots are known to exude a diversity of both small and macromolecular chemicals that mediate antimicrobial, anti-quorum sensing, allelopathic, and other effects (De-la-Peña et al., 2012). However, the machinery associated with the synthesis and extrusion of these compounds is not well understood. One of the most intriguing but least studied of these is emission of volatile and reactive organosulfur compounds such as the foul and toxic gas carbonyl sulfide (COS) and volatile carbon disulfide (CS$_2$). Both are reportedly released by numerous plants and are proposed to make a significant contribution to the environmental sulfur burden (Haines et al., 1989). As a case in point, the Central American rainforest plant _Stryphnodendron exelsum_ Harms (Mimosaceae), is a sufficiently strong sulfur emitter that its location in the forest can be determined by odor (Haines et al., 1989). Furthermore, 40 taxa from nine genera within the subfamily Mimosoideae, revealed that 29 from six genera produced CS$_2$, and 19 of the 40 taxa produced COS (Piluk et al., 2001). It has been proposed that the COS and CS$_2$ are derived from a putative cysteine lyase-mediated cleavage of djenkolic acid, an amino acid previously isolated from the plant (Piluk et al., 1998), but this has not been confirmed.

We used _Mimosa pudica_ L. (Leguminosae), a perennial shrub endemic to Brazil but now pantropical in its distribution (Howard, 1988), as a model to begin investigations of how this and related plants emit these highly reactive and corrosive compounds without themselves incurring tissue damage. Its various colloquial names, such as “sensitive plant,” “touch-me-not,” “shy plant” and “humble plant,” among many others (Holm, 1977), derive from its seismonastic movements—in response to touch, water, shaking, wind, or warming, its leaves quickly close, slowly opening after an average of about 10 min (Song et al., 2014). It also displays nyctinasty, with its leaves closing or “sleeping” with the onset of darkness. These curious characteristics coupled with its small size have made the plant a convenient and popular attraction in schools, greenhouses and other learning environments where it is used to illustrate seismonasty.

Our studies show that by using direct analysis in real time high-resolution mass spectrometry (DART-HRMS) (Cody et al., 2005), it is possible to detect the compounds emitted by plant roots _in situ_. Using this method, it was revealed that both _M. pudica_ plants germinated aseptically on agar and those germinated in soil emitted a variety of small molecules into the atmosphere at levels that were not detectable by human subjects. However, an odor detectable by humans could be sensed when the plant root was disturbed, with odor emission being dependent
on the nature of the stimulus. Analysis of the chemical contributors to the odor revealed that although the array of compounds observed to be produced by the roots was the same both pre- and post-stimulation, emission of a subset of organosulfur compounds was increased when the roots were stimulated. Light and scanning electron microscope imaging studies revealed the presence of sac-like protuberances dotted along *M. pudica* seedling root shafts that collapsed when the roots were exposed to stimuli that elicited odor emission. The detection by energy dispersive X-ray spectroscopy of relatively high levels of K⁺ and Cl⁻ prior to root stimulation on the one hand, and reductions in the levels of these species on the other, implicates the involvement of these ions in the observed mechanostimulatory behavior.

RESULTS

M. pudica seedlings emit organosulfur compounds into the environment

In previous studies where odor emission from *M. pudica* roots was reported (Hartel and Haines, 1992; Hartel and Reeder, 1993; Piluk et al., 1998), roots from gnotobiotically grown plants were detached from the aerial parts, washed with water, and subsequently crushed in an airtight plastic syringe. After a 7 min delay, the headspace of the crushed roots was analyzed by GC-MS. The only compound detected by this method was CS₂ and therefore it was concluded that the compound responsible for the odor detected when *M. pudica* is uprooted was CS₂.

From these studies, it remained unclear whether the CS₂ observed was emitted by the roots *in situ*, or appeared as a consequence of the root tissue breach. Therefore, we first conducted headspace analysis of intact *M. pudica* seedlings to determine whether CS₂ was present in the absence of tissue rupture, and to determine the optimal conditions for its detection by DART-HRMS. For these experiments, *M. pudica* seeds were germinated aseptically on agar so that they could be handled without tearing the roots. Seeds began germinating within 2-3 days, and seedlings grew to approximately 23 mm in length by the end of the first week. Over that time frame, each plant produced a single tap root that did not have hairs visible to the naked eye (Supplementary Figure S1). Using sterile stainless steel tweezers, seedlings were transferred to sterile vials equipped with septum caps (1 seedling per vial, see Supplementary Figure S2). In each case, the tweezers were used to grip the seedling at the hypocotyl. The transfer was accomplished in ~10 sec. The seedling headspace was then immediately sampled for 5 min using a PDMS solid phase microextraction (SPME) fiber (Supplementary Figure S2), and the fiber was
subsequently analyzed by DART-HRMS in both positive and negative-ion modes.

Representative results are shown in Figure 1. The positive-ion mode mass spectrum (Panel a) included peaks at nominal \(m/z \) 93, 110, 167, and 184 whose exact masses corresponded to formulas \(\text{C}_3\text{H}_9\text{OS} \), \(\text{C}_6\text{H}_8\text{NO} \), \(\text{C}_6\text{H}_{15}\text{OS}_2 \), and \(\text{C}_6\text{H}_{18}\text{NOS}_2 \) respectively. The formulas that contained sulfur were consistent with those of a number of organosulfur compounds common to *Allium* species such as onion, most notably propane sulfenic acid (\(m/z \) 93), and S-propyl propane 1-thiosulfinate in both protonated and ammoniated forms (\(m/z \) 167 and 184 respectively). The thiosulfinate serves as the major odor and flavor molecule produced in freshly cut onions, and the sulfenic acid is the reactive intermediate precursor of the thiosulfinate. The identity of the thiosulfinate was confirmed by comparing the DART-HRMS mass spectral fragmentation patterns of authentic standards obtained under in-source collision-induced dissociation (CID) conditions (cone voltage of 90 V), to fragments observed by DART-HRMS analysis of the *M. pudica* root samples under similar in source CID conditions. As sulfenic acids are fleeting reactive intermediates that cannot be isolated, it was not possible to confirm the structural identity of the peak at \(m/z \) 93. Thus, the propane sulfenic acid structural assignment is putative, albeit informed by the observations outlined in published studies showing that this sulfenic acid is the direct precursor of the S-propyl propane 1-thiosulfinate observed in this work and also seen in onion (Block, 1992). Furthermore, Block et al. have observed this intermediate in onion using DART-HRMS (Block et al., 2010; Block et al., 2011).

Figure 1 Panel b shows the DART-HRMS results of headspace analysis of the seedling in negative-ion mode. Notable peaks included those at nominal \(m/z \) 60, 61, 91, 124, 165 and 198 whose exact masses corresponded to formulas \(\text{N}_2\text{O}_2 \), \(\text{HCO}_3^- \), \(\text{C}_3\text{H}_7\text{SO} \), \(\text{C}_6\text{H}_6\text{NS} \), \(\text{C}_6\text{H}_{13}\text{OS}_2 \) and \(\text{C}_{12}\text{H}_8\text{NS} \) respectively. Formula \(\text{C}_3\text{H}_7\text{SO} \) is consistent with the presence of the deprotonated counterpart of the sulfenic acid intermediate putatively identified in the positive-ion mode spectrum shown in Panel a. However, as stated previously, its identity cannot be confirmed because it is a reactive intermediate as reported on extensively by Block et al. (Block, 1992). While \(\text{C}_6\text{H}_{13}\text{OS}_2 \) corresponded to the deprotonated form of the thiosulfinate observed in the positive-ion mode spectrum, the \(\text{C}_6\text{H}_6\text{NS} \) formula was consistent with that of an aminothiophenol (*ortho-, meta- or para*), and the \(\text{C}_{12}\text{H}_8\text{NS} \) corresponded to phenothiazine. In order to confirm these tentative structural assignments, authentic standards of *ortho-, meta- and para*-aminothiophenol, as well as an authentic standard of phenothiazine were subjected to in-
source CID by DART-HRMS in negative-ion mode. The fragmentation patterns were then compared with the *M. pudica* seedling spectrum acquired under identical conditions. The fragmentation patterns observed showed that C₆H₆NS and C₁₂H₈NS corresponded to o-aminothiophenol (also known as 2-aminothiophenol) and phenothiazine respectively.

It was the roots and not the aerial parts of *M. pudica* that emitted organosulfur odor volatiles

In order to determine whether *M. pudica* aerial parts were contributing to the organosulfur volatiles profile, a method was devised to permit analysis of the roots and aerial parts separately, in a manner that prevented disruption of plant tissue. Under sterile conditions, a bed of agar was suspended within a glass cylinder (Supplementary Figure S3 Panel a). The bottom of the cylinder was sealed with a septum and sterile water was introduced (via syringe), such that an air pocket remained between the agar and the water surface (Supplementary Figure S3 Panel c). Deposition of a 3-day old aseptically germinated *M. pudica* seedling on the top surface of the agar within the vertically mounted cylinder resulted in downward growth of the root through the agar plug towards the water (Supplementary Figure S3 Panel c). Within 48 h, the root eventually emerged from the bottom of the agar so that it was freely suspended in the open air space between the bottom of the agar disk and the water level, without touching the water, while the aerial part grew above the agar bed. In this way, the agar served to separate the compounds emitted by the aerial and root parts and allowed them to be analyzed independently. The root headspace was sampled with a PDMS SPME fiber by withdrawing the water from the bottom of the glass cylinder and inserting the SPME fiber as described earlier. The aerial headspace was sampled by sealing the top of the glass receptacle and inserting the SPME fiber as described. Representative negative-ion mode DART-HRMS spectra of the headspace of the separated *M. pudica* aerial and root parts are shown in Figure 2, rendered in a head-to-tail plot format. The root headspace (top spectrum) showed a profile of compounds that was quite different from that detected in the aerial headspace (bottom spectrum). Notably, none of the compounds detected in the root headspace were observed in the aerial headspace, and vice versa. In addition, organosulfur compounds including the propane sulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate and phenothiazine detected in the DART-HRMS negative-ion mode spectrum of the seedling (Figure 1 Panel b) were observed. The results indicated that...
organosulfur compounds were emitted by the roots and not the aerial parts. Furthermore, since the analysis was conducted under sterile conditions and without breaching the plant tissue, neither the molecules detected in the aerial headspace nor those observed in the root headspace were contributions from intracellular components or microbes.

M. pudica roots emit an odor when exposed to certain stimuli

In the course of these studies and in alignment with previous reports (Hartel and Reeder, 1993; Piluk et al., 1998) we detected a pungent, unpleasant sulfurous odor when 7-day old gnotobiotically grown plants were dislodged from soil. However, more often than not, it was also observed that when left undisturbed, neither seedlings germinated in soil, nor plants germinated aseptically on agar, exhibited an odor detectable to the human subjects performing the experiments. Furthermore, several human subjects reported that odor detection appeared to occur as a function of exposure of seedling roots to some stimuli but not to others. For example, touching the roots with fingers often elicited a strong odor, while exposure of roots to glass (e.g. vials, stirring rods) or stainless steel (e.g. tweezers), did not. Because of these observations, a preliminary assessment of the presence or absence of an odor detectable to human subjects was conducted by a panel of 5 untrained subjects who were asked to indicate whether or not they detected a “sulfurous” odor when roots of 7-day old seedlings gnotobiotically germinated on agar were touched. The sulfurous odor was defined as the smell the panelist experienced when an *M. pudica* seedling was dislodged from soil. The study was blind, in that the panelists were not apprised of whether the roots they were examining were touched or untouched. The study was performed by exposing the roots of 7-day old seedlings to the following 5 stimuli: a finger; soil; glass; stainless steel; and wood. Panelists were allowed to smell the root within 15 sec of root exposure to the stimulus, and asked to indicate whether or not they experienced an odor different from agar. The experiments were performed in two ways. For all cases except exposure of the root to soil, the stimulus was used to tap the root once as illustrated in Supplementary Video SV1, where the root is tapped with a finger. The seedlings used were all germinated on the bed of agar. In the case of soil, the root was dragged across the soil surface as is illustrated in Supplementary Video SV2 in order to simulate the effect of soil disruption that we and others observed resulted in odor release. Exposure of the seedlings to the various stimuli was conducted in replicates of 5 (i.e. each panelist was exposed to a total of 5 seedlings per stimulus experiment, as well as to a control which was comprised of a seedling germinated on agar which had not been
touched with any stimulus). The results, shown in Supplementary Figure S4, revealed that whereas root exposure to soil or fingers was observed to produce an odor detectable to the panelists most of the time (100% and 85% of the time respectively), root stimulation with glass did not have that effect within experimental error. Odor detection by the panelists in response to the other stimuli occurred to varying extents as indicated by the standard deviations of the results (wood: 35 ± 19; and metal: 35 ± 25).

The DART-HRMS-derived headspace profile of compounds produced in response to a smell producing stimulus was similar to that observed in the absence of an odor producing stimulus

In order to determine how the profile of compounds observed to be emitted by *M. pudica* seedlings in the absence of an odor producing stimulus (Figure 1 a/b) compared to that emitted by stimulated roots, the headspace volatiles of: (1) 7-day old sterile finger-stimulated seedlings; and (2) 3-month old soil bound plants in which the soil had been agitated by squeezing the pot three times, were sampled by PDMS SPME and analyzed by DART-HRMS as described above. Examples of typically observed positive- and negative-ion mode mass spectra are illustrated in Figure 3 and Figure 4 respectively. Positive-ion mode spectra of the seedling and the 3-month old adult plant are rendered in a head-to-tail plot (Figure 3), in which the top panel shows the seedling spectrum and the bottom the adult plant spectrum. The comparison shows that the profile of compounds observed in both cases is similar. Moreover, the observed organosulfur compounds were also detected in the positive-ion mode spectrum of the unstimulated seedling root (Figure 1a). The comparison of the negative-ion mode spectra of the seedling and 3-month old plant (both stimulated) (Figure 4) showed both similarities and differences. Most notably, several of the peaks below *m/z* 89 in the seedling spectrum were absent in the spectrum of the adult plant. These included the peaks at nominal *m/z* 46, 61, 62, 64 and 79.

Mass spectrometric analysis of seedling roots revealed emission of higher amounts of select organosulfur compounds when roots were stimulated

Our earlier described mass spectral analyses revealed that a cocktail of small molecules including organosulfur volatiles, were emitted by *undisturbed M. pudica* plants even though an odor was usually not detectable by human subjects (Figure 1 and Figure 2). To determine the
compounds responsible for the odor detected when roots were exposed to appropriate stimuli, 7-day old unstimulated seedlings grown on agar were transferred to glass vials. For each analysis, a SPME fiber was exposed to the headspace gas produced by a single plant for 5 min, and the fiber was then analyzed by DART-HRMS in negative-ion mode. Subsequently, each seedling was exposed to human skin in the manner shown in Supplementary video S1, and the DART-HRMS analysis was repeated. The experiment was conducted in triplicate. As previously observed, the same profile of compounds found in undisturbed plants (Figure 1) was seen, except that while the detected levels of some compounds remained constant within experimental error, the relative levels in the case of others was double as indicated by an increase in the ion counts observed by mass spectrometry. This result is illustrated in Figure 5 which shows the difference in ion counts for compounds emitted from untouched and touched roots (depicted in blue and red respectively). The total ion counts for the peaks at nominal m/z 91, 124, 165, and 198 were approximately double those observed in the unstimulated roots, ± 5%. These peaks corresponded to propanesulfenic acid (m/z 91), 2-aminothiophenol (m/z 124), S-propyl propane-1-thiosulfinate (m/z 165), and phenothiazine (m/z 198). The identity of the compound represented by m/z value 239 is unknown.

CS$_2$, which has been proposed to be responsible for the smell of *M. pudica* roots, was never detected under the soft ambient ionization conditions of DART-HRMS, but only under GC conditions

Despite previous reports that the odor emitted by *M. pudica* roots is caused by CS$_2$ (Hartel and Reeder, 1993; Piluk et al., 1998), we never detected CS$_2$ by DART-HRMS even though we analyzed >100 seedling roots of different ages, under various growth conditions (in soil and on agar), and at different periods in the growing season (spring, summer, fall and winter). Since CS$_2$ was detected previously by GC-MS, we conducted GC-MS analyses of SPME fibers exposed to *M. pudica* root volatiles for 5 min under conditions similar to those previously reported (Piluk et al., 1998). Supplementary Figure S5 shows the GC-MS results typically observed. The GC chromatogram appears in Panel a, and shows that only two species, one of which was molecular oxygen, were detected. The identity of the second peak which appeared at 1.36 min was confirmed to be CS$_2$ based on the match between its EI mass spectral
fragmentation (Panel b) pattern and authentic CS$_2$. Thus, in contrast to what was detected by DART-HRMS but consistent with previous observations, CS$_2$ was detected by GC-MS.

Microscopy revealed sac-like root protuberances that became flattened after the roots were touched with odor inducing stimuli

The observed emission of a variety of compounds from $M.~pudica$ roots prompted us to examine whether the roots might have structures analogous to the glandular trichomes observed on the aerial parts of plant species that secrete essential oils. Thus, we examined the roots by light microscopy. At 6X magnification, hair-like protuberances that appeared in clusters along the length of the tap root were observed (Supplementary Figure S6).

To examine the morphology of the hair-like structures of untouched vs. touched roots, 7-day old untouched and touched seedlings that were aseptically germinated on agar were further examined by cryo scanning electron microscopy (cSEM). Seedlings were flash frozen with liquid nitrogen just prior to analysis. Figure 6 shows representative images of unstimulated and stimulated seedling roots. On some areas of the unstimulated root, a significant number of turgid protuberances were present (Figure 6, Panel a). Magnification of the section enclosed in a square in Panel a is shown in Panel b. Other segments of the root were only sparsely populated with protuberances as shown in Panel c. Panel d shows an example of what was typically observed for roots that were stimulated to produce an odor. The root previously had protuberances as observed by light microscopy (Supplementary Figure S6), but after the root was tapped once by a human finger, the protuberances in the touched area had collapsed (Panel d).

Figure 7 shows a representative SEM micrograph of an untouched $M.~pudica$ root that was acquired under cryo conditions using a microscope equipped with an energy dispersive X-ray spectrometer (EDS) for elemental analysis determination. The cSEM micrograph is shown in Panel a. Each of the elements detected in the X-ray map is represented by a different color (indicated in Panel b). The hue of the micrograph of the root segment shown in Panel a, reflects the composite of the overlaid color-coded contributions of the elements detected. The map sum spectrum of the elements detected and their relative amounts are shown in Panel c. The EDS analysis revealed that besides the expected C, N and O contributions expected to be present in living tissue, other elements detected included K, Cl, N, Ca, S, P and Mg at 13.1, 2.6, 2.5, 1.7, 1.4, 0.5, and 0.4 weight % respectively (Figure 7 Panel c). The amounts of K$^+$ and Cl$^-$ were
significant enough in some of the hairs that an outline reflecting the presence and topology of the
hairs in the cSEM image shown in Panel a, can be seen in the K\(^+\) and Cl\(^-\) maps (Panel b). The
microscopic protuberances, which were flattened under the high vacuum conditions of the
experiment, varied in length from between 100 and 200 \(\mu\text{m}\), and had a sac-like appearance, with
several having relatively high localized levels of K\(^+\) and Cl\(^-\) as revealed by EDS.

Figure 8 (top panel) shows the cSEM micrograph of a root segment on a bed of agar
whose left side was exposed to a human skin and whose right side was untouched. The sacs that
were previously on the left side of the root (as observed by light microscopy) had collapsed,
consistent with our previous observations (Figure 6d). However, sacs still appeared on the right
side (untouched) of the root segment. EDS analysis was performed on the three sections of the
root labeled “Spectrum 1”, “Spectrum 2” and “Spectrum 3” of the micrograph shown in Figure 8
(upper panel) in order to assess the similarity of the elemental profile of stimulated versus
unstimulated root sections. The EDS map sum spectra illustrating the elemental compositions for
the three sections are shown in the bottom panel of Figure 8. Comparison of the three spectra
from the three root areas sampled showed that although the level of K\(^+\) was similar for the
Spectrum 1 and Spectrum 2 areas (i.e. 6.0 ± 0.1 and 5.2 ± 0.1 weight % respectively), that in the
Spectrum 3 area (which was farthest away from the area that was touched) was almost double, at
10.8 ± 0.1 weight %). Similar trends were observed for Cl\(^-\), Ca\(^{2+}\) and S. For the Spectrum 1 and
Spectrum 2 sampled areas that were close to the part of the root that was stimulated by exposure
to human skin, the Cl\(^-\) levels were 0.8 ± 0.1 and 0.7 ± 0.1 weight % respectively, whereas a Cl\(^-\)
level of 2.3 ± 0.1 weight % was observed in the Spectrum 3 area. For Ca\(^{2+}\), the relative amounts
observed for the Spectrum 1, Spectrum 2 and Spectrum 3 areas of the root segment were 1.1 ±
0.1, 1.2 ± 0.1 and 2.3 ± 0.1 weight % respectively, showing that the amount of Ca\(^{2+}\) in the
Sample 3 area was double that observed in the Spectrum 1 and 2 areas. The amount of S in the
Spectrum 3 area was 1.4 ± 0.1 weight %, whereas that for the Spectrum 1 and 2 areas was 0.9 ±
0.1 and 1.0 ± 0.1 weight % respectively, showing that the amount of S in areas 1 and 2 was
similar, while that in area 3 was higher. Quantitation (i.e. determination of the actual amounts of
the elements in stimulated versus unstimulated roots) could not be made because quantitation by
EDS requires that the sample be (1) perfectly flat; (2) homogeneous; and (3) infinitely thick to
the X-ray beam. Since plant roots do not fit these criteria, the actual amounts of the elements
could not be determined. Attempts were also made to perform quantitation using X-ray
fluorescence. However, these efforts were unsuccessful because the sample handling required to conduct the experiment always resulted in emission of volatiles. Thus, it was not possible to acquire “before touch” and “after touch” results that could be compared for different samples. However, in order to confirm the reproducibility of the results, the experiment was repeated several times, and in all cases, the same aforementioned trends were observed. Thus, another example is shown in Supplementary Figure S7. The segment of the root shown above the line in the cSEM micrograph is the untouched portion, while that below the line was touched with a finger. The sections labeled “1”, “2” and “3” in the micrograph are those areas that were analyzed by EDS, and the EDS results are shown beneath the cSEM micrograph and labeled “Spectrum 1”, “Spectrum 2” and “Spectrum 3” respectively. Similar to the results presented in Figure 8, the section of the root furthest from the touched area exhibited the highest levels of K⁺ and Cl⁻ (5.7 and 0.8 weight % respectively), while the relative levels of these ions for the touched area were 2.6 and 0.5 weight % respectively).

DISCUSSION

In this article, we describe our observation of four heretofore unreported phenomena: (1) the emission of compounds from roots in response to a touch stimulus; (2) the ability of the root to distinguish between different types of stimuli, such as responding to exposure to soil or the touch of a finger but not to other stimuli; (3) emission and detection of highly reactive and elusive organosulfur intermediates, including thioformaldehyde, in addition to other unique species; and (4) the presence of sac-like microscopic protuberances along *M. pudica* root shafts.

The finding that *M. pudica* roots secrete increased levels of metabolites in response to touch is particularly remarkable in light of the fact that the aerial parts of the plant are also touch-sensitive. The sac-like protrusions that were revealed by light microscopy and cSEM to appear in clusters along the root shaft, are reminiscent of the well-known glandular trichomes that have been observed on the aerial parts of many plants, and which manufacture and emit a diversity of secondary metabolites (Tissier, 2012). Root hairs with glandular morphologies that secrete small molecule organics have been observed in sorghum (Netzly and Butler, 1986) and apple (Head, 1964) seedlings. However, those that appear in *M. pudica* may be most analogous to the “exploding” glandular trichomes seen on aerial parts of *Sicana odorifera* (Kellogg et al., 2002) and *Salvia blepharophylla* (Bisio et al., 1999) (and proposed to have been present in the extinct...
seed fern *Blanzyopteris praedentata* (Krings, 2002; Krings et al., 2003) that release exudate in response to touch.

Plant root tip cells exhibit a form of responsiveness to touch whereby they can circumvent barriers encountered in soil that obstruct their downward trajectory. For example, in *Arabidopsis*, the gravitropism normally displayed by plant roots is supplanted with a thigmotrophic response when the downward direction of growth is impeded by a barrier (Okada and Shimura, 1990; Massa and Gilroy, 2003). However, the ability of roots to distinguish between types of stimuli was surprising and to our knowledge is not a previously reported phenomenon. Nevertheless, this behavior seems analogous to a characteristic of the aerial parts of plants that exhibit mechanostimulatory activity. It was noted by Darwin (Darwin, 1880; Darwin, 1893), for example, that although the carnivorous response of *Drosera rotundifolia* is induced by contact between insect prey and the plant’s tentacles, these same tentacles do not respond to rain or wind. Some flowers are also known to explosively release pollen in response to touch. For instance, male flowers of the orchid species *Catesetum saccatum* forcefully release their pollen sacs in response to touch by an insect of the antennae at the center of the flower. How the plants distinguish between the different forms of stimuli (e.g. insect vs. inanimate object) is not fully understood, and we do not yet know the mechanism by which *M. pudica* emits small molecules in response to various stimuli. Interestingly, although a single tap by a finger of an *M. pudica* root reliably resulted in odor emission, the same was not true of other odor eliciting stimuli. For example, exposing a root to soil by gently tapping it once on the soil surface did not produce and odor, whereas dragging the root across the surface (as shown in Supplementary video SV2) reliably produced a strong odor. Although the latter observation implied that odor emission was a consequence of rupturing of the sacs that appeared along the root shaft, this conclusion did not explain why a single tap on the root by a human finger produced an odor, but a similar action with glass did not. Additional more extensive studies are being conducted to investigate the mechanism of this phenomenon.

The composite of small-molecule species detected by high-resolution positive- and negative-ion mode DART-HRMS provided an unprecedented glimpse of the in situ root emissions, and further expands on the recently demonstrated utility of ambient ionization MS techniques in the detection of plant derived organosulfur volatiles (Domin, 2014). These include the demonstrations (Block et al., 2010; Block et al., 2011) (Kubec et al., 2010) that various
organosulfur intermediates that are formed when the tissues of onion (*Allium cepa*), garlic (*Allium sativum*), *Allium siculum* and *Petiveria alliacea* are injured, can be detected in real time by DART-HRMS. Of particular relevance is the finding that the changing profile of organosulfur exudates that occurs in *Brassica* spp. roots in response to herbivore attack or a tissue breach can be monitored in real time by proton transfer reaction-mass spectrometry (PTR-MS) (Crespo et al., 2012; Danner et al., 2012; van Dam et al., 2012; Samudrala et al., 2015). If conventional metabolome analysis sample preparation methods had been used in these cases (e.g. plant tissue disruption followed by solvent extraction and GC-MS analysis of the extract), it would not have been possible to distinguish between compounds emitted into the environment by the roots, and those that were intracellular. Furthermore, the solvent extraction step used in many conventional analysis methods selects for the subset of compounds that are most well-solubilized in the solvent used, and thus not all compounds present are detected. These factors underscore the utility of these ambient ionization MS techniques as tools for the investigation of *in situ* plant emissions in a manner that does not interfere with the biological processes of the system.

In order to confirm that organosulfur volatiles contributions were from the roots and not the plant’s aerial parts, a small growth chamber was designed in which a plug of agar separated the aerial parts from the roots. When placed on the bed of agar, the seedling tap root grew through the agar and emerged on the opposite side. This construct permitted independent analysis of both the roots and aerial parts without disturbing the plant or disrupting of the plant tissue. Furthermore, as the experiment was conducted under sterile conditions, there were no microbe-derived contributions to the headspace volatiles. Using this method, we were able to confirm that the aerial parts did not contribute detectable organosulfur volatiles.

As compared to hydrocarbons, organo-oxygen and organo-nitrogen compounds, organosulfur molecules are well-known to have low odor thresholds (ppb for organosulfur compounds vs ppm for organo- oxygen and nitrogen compounds) (Leonardos et al., 1969). Therefore, we were surprised by the observation that plant roots emitted organosulfur volatiles that were detectable by DART-HRMS in the absence of a stimulus, even though they were not detectable to humans by smell. Since mass spectrometric analysis showed that human olfactory detection was associated with an apparent doubling of the emission of a subset of root volatiles, we conclude that emissions from non-stimulated roots were at levels below the ppb olfactory threshold for the panelists in our study. It should be noted that the use of SPME fibers to sample...
headspace gases served to concentrate the volatiles, which means that the level of compounds detected by SPME analysis were much lower than was implied by our ability to detect their presence on the fiber. Our observations also raise the possibility that there may have been some odor compounds that went undetected by the form of analysis used in this study. In our experiments, PDMS SPME fibers were used to concentrate the headspace gases so that their constituents would be at high enough levels to be detected. The fibers were exposed to the headspace for 5 min (as opposed to 30 min which is used when one wishes to saturate the fibers) in order to be able to differentiate between the relative levels of emitted compounds. Thus, one way in which to determine whether additional odor compounds were present would have been to extend the exposure time of the SPME fiber to the headspace, in order to capture the maximum range and levels of compounds possible. We conducted this experiment by exposing PDMS SPME fibers to the headspace of numerous *M. pudica* roots (stimulated and unstimulated) for 30 min. Subsequent DART-HRMS analysis revealed chemical profiles identical to those obtained for stimulated and unstimulated roots that had been exposed to PDMS fibers for 5 min (data not shown). This result supports the premise that we detected most if not all of the detected compounds. However, it is also possible that there may have been odor compounds present that were not adsorbed to the PDMS fiber. To date, we have not found a commercially available SPME fiber that enabled us to detect the diversity of compounds adsorbed to PDMS. Thus, we have concluded that at a minimum, there were 5 compounds represented by nominal m/z 91, 124, 165, 198 and 239, whose increased emission from *M. pudica* roots in response to appropriate stimuli was correlated with odor detection by human subjects.

Although odiferous organosulfur compounds featured heavily in this mix of emitted molecules, noticeably absent was the CS$_2$ reported by Piluk *et al.* (Piluk *et al.*, 1998). Published studies on the analysis of CS$_2$ production in Mimosoideae spp. are similar in that they have all involved: (1) detection of CS$_2$ *after* root tissue disruption; (2) a significant time delay between tissue disruption and CS$_2$ analysis; and (3) detection of CS$_2$ under high injector temperature conditions (100-250 °C) (Haines, 1991; Hartel and Reeder, 1993; Feng and Hartel, 1996; Piluk *et al.*, 1998), a factor known to result in rapid and facile degradation of labile organosulfur compounds (Block, 2011). The fact that optimal CS$_2$ production has been observed only after tissue disruption and a significant delay between tissue rupture and analysis time could mean that the chemistry resulting in the appearance of CS$_2$ was subsequent to earlier stage reactions that
rapidly produced compounds that served as a first line of chemical defense and which were later
degraded to CS$_2$. Additionally, the GC conditions used for analysis of organosulfur compounds
are notorious for promoting reactions in the GC injection port which result in the production of
compound artifacts (Block, 2011). In light of this and our own observations outlined herein, it is
possible that the CS$_2$ previously reported is not produced by the plant \textit{per se}, but is rather formed
from precursors which under the GC conditions used, degraded to form CS$_2$. This hypothesis is
supported by our observation that in contrast to the diversity of compounds detected by DART-
HRMS analysis of SPME fibers exposed to \textit{M. pudica} root volatiles, GC-MS analysis under
published conditions as well as GC analysis of PDMS SPME fibers that had been exposed to the
headspace were the only conditions under which CS$_2$ was observed (Supplementary Figure S5).
This implies that these compounds, when previously observed by GC-MS, were artifacts of the
experimental protocol used for their detection (Haines et al., 1989; Farkas et al., 1992; Hartel and
Reeder, 1993; Feng and Hartel, 1996; Piluk et al., 1998).

Several of the compounds emitted by \textit{M. pudica} roots are consistent with those that
would be expected from cysteine lyase-mediated degradation of djenkolic acid, a compound
detected in \textit{M. pudica} roots (Piluk et al., 1998). A putative mechanism for the formation of these
volatiles from djenkolic acid is shown in Figure 9, and it accounts for the observation of
thioformaldehyde, pyruvate and ammonia. Thioformaldehyde, a fleeting unstable species under
ambient conditions (Solouki et al., 1976), is a constituent of interstellar clouds (Agúndez et al.,
2008). It has been formed by thermolysis, photolysis or vacuum pyrolysis of appropriate
precursors, and observed by microwave spectroscopy (Penn et al., 1978) or trapped in low-
temperature matrices for structural studies (Jacox and Milligan, 1975; Solouki et al., 1976;
Torres et al., 1982; Watanabe et al., 1991; Suzuki et al., 2007). Its detection (albeit in trace
amounts), like that of the sulfenic and sulfinic acids observed here and in recent studies of
Alliums by Block and co-workers (Block et al., 2010), is quite remarkable, and speaks to the
utility of DART-HRMS in the characterization of reactive organosulfur intermediates.

The mechanism by which the roots are responsive to touch is unclear. However, the
observation that untouched root hairs contain relatively high levels of K$^+$ and Cl$^-$ (Figure 8 and
Supplementary Figure S7) and that touched root segments have lower relative levels of K$^+$ and
Cl$^-$ compared to untouched sections of the same root (Figure 8 and Supplementary Figure S7)
may indicate that the process is similar in some ways to that which has been proposed to cause
movement in the aerial parts of the plant. *M. pudica* leaf closing in response to touch is controlled by specialized structures called pulvini that appear at the base of the petioles. Movement occurs when cells within the pulvini lose water and turgor, which has been proposed to be triggered in part by transport of K^+ and Cl^- ions in pulvini cells (Simons, 1981; Fromm and Eschrich, 1988; Visnovitz et al., 2007; Volkov et al., 2010; Volkov et al., 2014).

The seismonasty exhibited by the aerial parts of *M. pudica* has been suggested to be a defensive strategy whose suddenness may serve to scare or shake off intruders (Pickard, 1973), give the appearance of a less voluminous meal (Braam, 2005), or make more apparent to would-be predators the menacing thorns sported by the plant stems (Eisner, 1981). However, the purpose of the mechanostimulatory behavior of the roots and the role of the compounds emitted are not immediately apparent. Given the inherent complexities of rhizosphere ecosystem biology, further systematic studies will be necessary to determine the functions of the root protuberances and the small molecule emissions. These are areas of continuing study in our labs.
MATERIALS AND METHODS

Plants. *M. pudica* seeds were obtained from Seedvendor.com. They were immersed in 70% aqueous ethanol for 1 min, rinsed with sterile water, submerged in 3.075% sodium hypochlorite (50% solution of Clorox, Oakland, CA) containing 0.05% Tween-20 for 10 min and rinsed 9x with 23 °C sterile water. Seeds were placed in 70 °C sterile water for 16 h at 23 °C. Using sterile tweezers, five to six seeds were placed on 100 x 15 mm or 150 x 15 mm petri dishes containing 1x Murashige & Skoog medium with vitamins (PhytoTechnology Laboratories, Shawnee Mission, KS), and 44 mM sucrose solidified with 2% tissue culture-grade purified agar (PhytoTechnology Laboratories). Seeds germinated within two to three days and were grown under fluorescent lights with 16 h of light per day at 23 °C. *M. pudica* seeds germinated in soil were first scarified by suspending them in 70 °C deionized water for 16 h at 23 °C. Using tweezers, 3-4 seeds were placed within each receptacle in a 36 cell greenhouse kit according to the manufacturer’s specifications (Burpee & Co., Warminster, PA). Germination occurred within 4 days. Seedlings were transplanted 14 days after germination into Miracle Gro™ flower and vegetable garden soil in 6 in pots under greenhouse conditions. Plants were watered daily.

Headspace solid-phase microextraction (SPME) sampling. A 2 cm 50/30 μm Divinylbenzene/Carboxen/ Polydimethylsiloxane (DVB/CAR/PDMS) 24 gauge Stableflex fiber (Sigma-Aldrich, St. Louis, MO. USA), mounted within a manual SPME fiber holder assembly (Sigma-Aldrich), was used for analysis of headspace gases. SPME fibers were conditioned by heating at 250 °C in a helium gas stream for 2 h just prior to analysis, and were subjected to mass spectrometric analysis to confirm the absence of adsorbed species prior to sampling of headspace gases. For seedling analysis, 1-week old plants that were aseptically germinated on the surface of agar were gently lifted at the stem just beneath the cotyledons and immediately placed in a 15 mL clear glass vial (O.D. × H × I.D. 21 mm × 70 mm × 12 mm, thread 18-400) (Sigma-Aldrich) which was capped with a Mininert® screw thread valve (Sigma-Aldrich). For root stimulation experiments, the seedling root was touched with a finger as shown in Supplementary Video SV1 prior to placing it in the vial. The process of touching the root and depositing it into the vial took approximately 10-15 s. The manual SPME fiber assembly equipped with a conditioned SPME fiber was then inserted into the valve of the Mininert® cap, and the fiber was exposed to the headspace gases for 5 min at 25 °C. Mass spectrometric analysis of the fiber was
then conducted either by DART-HRMS or GC-MS. The headspace gases of adult plants were sampled similarly. The entire potted plant was placed into a jar (1.88 L, 12 cm internal diameter, 21 cm in height) which was sealed with an airtight cap that was outfitted with a rubber septum through with the SPME fiber assembly was inserted. After exposure to headspace volatiles for 5 min, the SPME fiber was retracted, the fiber assembly was removed, and the fiber was then immediately subjected to MS analysis. Adult plant root stimulation experiments were conducted similarly, except that the plant to be analyzed was uprooted from soil, the bulk of the soil was gently removed, and the entire plant was deposited within the 1.88 L jar as described above.

Separation of the *M. pudica* aerial and root parts for independent headspace sampling.

An apparatus comprised of a Pyrex® glass rod (25.4 mm O.D.) and a Pyrex® cylindrical tube (26.4 i.d, 30 mm o.d) [both purchased from Sci-Tech Glassblowing, Inc. (Moorpark, CA USA)] was created (Supplementary Figure S3). Both the glass rod and tube were cut into 90 mm sections. An O-ring (7/8x1 in) was placed on the middle of the rod. The rod was inserted into the cylindrical tube and the O-ring served to allow the rod to reach only half-way into the tube. The opposite open end of the tube was covered with foil and the entire set-up was sterilized.

Subsequently, approximately 5.5 mL of plant media, comprised of Murashige & Skoog medium with vitamins (PhytoTechnology Laboratories, Shawnee Mission, KS USA), sucrose, and plant cell culture tested agar (Sigma-Aldrich, St. Louis, MO USA), was poured into the open end of the cylindrical tube. After it had solidified, the glass rod was removed, leaving behind a 1 mm thick disc of agar. One end of tube was sealed with sterile rubber sleeve septum (12.7 bottom I.D., 23.7 mm O.D.; Sigma-Aldrich, St. Louis, MO USA). An aseptically germinated 3-day old *M. pudica* seeding was placed on the agar surface using sterile tweezers. Sterile water (20 mL) was injected through the bottom septum and the open end of the tube was lightly covered with sterilized parafilm to prevent the agar from drying out. Within 48 h, seedling root had emerged from the opposite side of the agar disk, such that the agar served to completely separate the headspace of the aerial and root parts. To sample the root headspace, the water was withdrawn via syringe and the PDMS SPME fiber was inserted into the septum. For sampling of the aerial headspace, a rubber septum was applied to the top of the tube and the PDMS SPME fiber was inserted into the septum. Sampling and analysis occurred as described above.
Mass spectrometric analysis. An AccuTOF™-DART (JEOL USA Inc., Peabody, MA USA) high-resolution time-of-flight mass spectrometer (TOF-MS) was used for mass measurements. The instrument and experimental conditions for the DART-TOF-MS analyses were conducted at 250 °C and performed as previously described (Kubec et al., 2010), except that headspace gases were first adsorbed onto a SPME fiber, which was then analyzed. For analysis, the fiber was held for a few seconds at the mass spectrometer inlet, and the resulting spectrum was recorded. Calibration, spectral averaging, background subtraction, and peak centroiding of the mass spectra were performed using TSSPro3 (Shrader Software Solutions, Detroit, MI, USA) data processing software. Mass Mountaineer software (www.mass-spec-software.com, Toronto, Ontario, Canada) was used for mass spectrum analysis, spectral elemental composition and isotope analysis. Calibration was performed using a polyethylene glycol mixture (PEG 200, 400, 600, and 1000). Experiments in which changes in the emission profiles of molecules were monitored (to compare unstimulated and stimulated roots) were acquired in negative-ion mode. The experiments were conducted in triplicate. Mass to charge ratio values for molecules whose unstimulated versus stimulated ion counts were different within experimental error were selected in TSSPro and subjected to peak area integration for each SPME fiber analysis. Reconstructed ion chromatograms (RICs) of these peaks for each sample were exported to Excel. The total peak area counts for the individual m/z values were calculated for each sample and then summed to get the overall peak area counts. The three replicate individual peak area counts were averaged and the average overall peak area count was calculated. GC-MS analysis was conducted using an Agilent HP 6890 GC coupled to a HP 5972A mass selective detector (Agilent Technologies, Santa Clara, CA, USA). Headspace gases from root-stimulated plants were sampled and analyzed as previously described (Haines, 1991) using a capillary column (HP-5 MS, 30m x 0.25mm, 0.25µm), under the following conditions: Oven temp: 50 °C, raised linearly at a rate of 20 °C/min to 200 °C; Inlet temperature: 100 °C; Inlet mode: splitless; Carrier gas: He, with a flow rate of 1 mL/min; Ionization mode: EI+, 70 eV, 300 µA.

Microscopy. Scanning electron microscopy imaging of untouched and touched seedlings was done under cryo conditions (cSEM) at liquid N₂ temperature. Two methods (1 and 2) were used: Method 1: A 1-week old seedling was carefully placed onto an SEM sampling block (JEOL) that was outfitted with two clamps that were used to hold the seedling in place. The entire setup was
then plunged into a Dewar of liquid N$_2$ where it was allowed to equilibrate. The sampling block with the seedling was then viewed with a JSM-6610LV scanning electron microscope (JEOL USA Inc.). With the samples prepared in this way, the turgor of the roots was maintained for a significant period during the analysis (as illustrated in Figure 4).

Method 2: An SEM sampling block (JEOL USA Inc.) was immersed in liquid N$_2$ for 15 min. The block was then removed from the liquid N$_2$ and a 1-week old seedling was contact-frozen by quickly placing it onto the liquid N$_2$-cooled SEM sampling block. The sample was then imaged using a JSM-IT300LV scanning electron microscope (JEOL USA Inc.).

Light microscopy: *M. pudica* roots were viewed using a Nikon stereozoom SMZ800 microscope that was equipped with a Nikon DS Fi2 microscope camera.

X-ray fluorescence. X-ray fluorescence measurements were made with a JEOL JSX-1000 benchtop energy-dispersive X-ray fluorescence spectrometer.

Root stimulation experiments. The roots of *M. pudica* seedlings that were germinated aseptically on agar were lifted from the agar bed with stainless steel tweezers at the stem beneath the cotyledon and exposed to human skin and soil as shown in Supplemental Videos SV1 and SV2 respectively. To determine whether exposure to other forms of matter elicited an odor detectable to humans, roots were touched with the following materials either by a single tap with the material as shown in SV1, or in the case of soil, by dragging the root across the surface as shown in SV2: a 12 x 0.2 inch metal spatula (410 stainless steel, Fisher Scientific, Waltham MA); a 6 x 0.19 in glass stirring rod (Fisher Scientific, Waltham MA); and a 4 in wooden toothpick (Diamond L’Elegance extra long toothpicks, no additives) were used as stimuli. For some experiments, exposure of roots to the metal, glass and wood stimuli was performed while the roots were being viewed using a Nikon stereozoom SMZ800 microscope in order to determine whether the structures along the root shaft were modified on exposure to the various materials. For other experiments, roots were imaged by cSEM both before and after exposure to human skin.

Odor detection. Odor emission from 7-day old *M. pudica* seedlings was assessed by a panel of 5 individuals who evaluated the samples as either having no detectable odor or a detectable odor.
Each panelist was exposed to 5 seedlings before and after stimulation. Seedlings were suspended approximately 1 inch from the nose of each panelist before and after root stimulation.

Odor emission experiments. Odor emission from 7-day old *M. pudica* seedlings could be elicited by dragging seedling roots across the surface of soil or subjecting the seedling to single tap by a human finger (as shown in Supplementary video files SV2 and SV1 respectively). For the soil experiments, 30 grams of Miracle Gro garden soil was dispensed into a petri dish bottom (100 x 25 mm polystyrene dish, PhytoTechnology Laboratories, Shawnee Mission, KS). One week old *M. pudica* seedlings were carefully lifted from agar plates at the seedling stem just beneath the cotyledon with stainless steel tweezers. Seedling roots were then dragged along the soil surface while being held with the tweezers (Supplementary video SV2). For the human finger touch experiments, 7-day old *M. pudica* seedlings were tapped once with a finger as shown in Supplementary video SV1. To test whether an odor could be detected if the seedling root was exposed to other forms of matter, seedling roots were tapped once with: (a) a 6 x 0.19 in glass stirring rod (Fisher Scientific, Waltham MA); (b) a 12 x 0.2 in metal spatula (410 stainless steel, Fisher Scientific, Waltham MA); a 4 in wooden toothpick (Diamond L’Elegance extra-long toothpicks, no additives). The influence of stimulation of the aerial plant parts on detection of an odor was also determined. The cotyledons of 7-days old seedlings whose roots had not been exposed to odor emission stimuli were held between the thumb and forefinger for from 5 to 30 second and released. Whether or not an odor was detected was then recorded.
FIGURE LEGENDS

Figure 1. Typically observed DART-HRMS positive- and negative-ion mode spectra of the headspace of 7-day old *M. pudica* seedlings in the absence of an odor producing stimulus. In each case, a SPME fiber was exposed to the headspace for 5 min, and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the observed HR elemental compositions and isotope data obtained, as well as the results of comparisons of the fragmentation patterns observed for standards under in-source CID conditions, to that of the headspace samples also obtained under in-source CID conditions. Detected compounds were observed in their protonated or ammoniated forms. The mass measurements and relative peak abundances associated with the data shown here are presented in Table S1.

Figure 2. Head-to-tail plot of the typically observed negative-ion mode DART-HRMS of the headspace gases produced by the root (top spectrum) and aerial part (bottom spectrum) of a 1-week old *M. pudica* plant. The aerial and root parts were separated by an agar partition within a Pyrex tube. In each case, a SPME fiber was exposed to the headspace gases for 5 min, and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the observed HR elemental compositions and isotope matching data, as well as the results of in-source CID experiments. The mass measurements and relative peak abundances associated with the data shown here are presented in Table S1.

Figure 3. Head-to-tail plot of the typically observed positive-ion mode DART-HRMS of the headspace gases produced by stimulated roots of: (1) 1-week old (Panel a); and (2) 3-month old (Panel b) *M. pudica* plants. In each case, a SPME fiber was exposed to the headspace gases for 5 min, and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the HR elemental compositions and isotope data obtained. Detected compounds were observed in their protonated or ammoniated forms. The mass measurements and relative peak abundances associated with the data shown here are presented in Table S3.

Figure 4. Head-to-tail plot of the typically observed high-resolution (HR) negative-ion mode DART-HRMS of the headspace gases produced by the roots of 1-week old (Panel a) and 3-month old (Panel b) *M. pudica* plants. In each case, a SPME fiber was exposed to the
headspace gases for 5 min and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the observed HR elemental compositions and isotope data obtained. Detected compounds were observed in their deprotonated forms. The mass measurements and relative peak intensities associated with the data shown here are presented in Table S4.

Figure 5. Differences in ion counts for some of the DART-HRMS detected compounds emitted from untouched and touched roots (depicted in blue and red respectively). The data represent the average of three replicates of the actual DART-MS derived ion counts at each of the nominal m/z values shown, and the ion counts reflect the amounts of the observed ions. Mass-to-charge ratios are only shown for molecules whose touched and untouched ion counts were different within experimental error. The errors were no more than $\pm 5\%$ in all cases. The chemical species represented by the m/z values are the deprotonated forms of propanesulfenic acid (m/z 91), 2-aminothiophenol (m/z 124), S-propyl propane-1-thiosulfinate (m/z 165), and phenothiazine (m/z 198). The identity of the molecule represented by m/z value 239 is unknown. The “Totals” bars represent the summation of total ion counts for all the indicated m/z values for the unstimulated (blue) and stimulated (red) roots respectively.

Figure 6. Representative cryo SEM (cSEM) micrographs of *M. pudica* seedling roots. Panel a: A segment of a root showing a high density of hair-like protuberances. Panel b: Expansion of the boxed area shown in Panel a. Panel c: A segment of the same root shown in Panel a, that was distal to that appearing in Panel a, in which the population of protuberances is sparse. Panel d: A touched segment of a root shaft that was previously shown by light microscopy to have protuberances. The protuberances are no longer present. Observed protuberances were 100—200 mm in length.

Figure 7. Representative cryo SEM (cSEM)-electron dispersive spectroscopy (EDS) micrograph of a section of a *M. pudica* seedling root densely populated with hairs that are flattened (as opposed to turgid) under the high vacuum conditions of the analysis. Panel a: The hue of the image reflects the composite of the overlaid color-coded contributions of the elements C, N, O, Mg, P, S, Cl$^-$, K$^+$ and Ca$^{2+}$. Panel b: X-ray maps of each of the color coded elements contributing to the color composite shown in Panel a. Whereas in some cases, such as for C, N and O, there is uniform elemental distribution, the concentrations of Cl$^-$ and K$^+$ are
significant enough in some of the hairs that a general outline reflecting the topology of those hairs in the cSEM image is revealed in their maps. Panel c: Elemental composition map sum spectrum of the cSEM image shown in Panel a. The relative percentage contributions by weight % are listed and show that besides C, N and O, K\(^+\) and Cl\(^-\) are present at the highest relative concentrations.

Figure 8. cSEM micrograph with EDS analysis of a section of a *M. pudica* root the left side of which had been touched with a finger. The root sample was flash frozen at liquid N\(_2\) temperature immediately after an odor was detected. The cSEM micrograph (top panel) shows an *M. pudica* root section which, prior to being touched, was shown by optical microscopy to be heavily populated with glandular hairs on both sides. The micrograph shows that consistent with previous observations, the hairs on the touched side of the root were no longer present. A few flattened sacs can be seen on the right side. The EDS spectra for the indicated boxed inspection fields shown in the micrograph are show in blue (bottom panel) with the observed elements indicated (by relative weight %).

Figure 9. Proposed mechanism for cysteine lyase-mediated degradation of djenkolic acid. In the first step, a Schiff base forms between djenkolic acid and the enzyme-derived pyridoxal phosphate (PALP). Enzyme promoted proton abstraction from an \(\alpha\)-carbon in the djenkolic acid-PALP complex ultimately results in liberation of thioformaldehyde, cysteine and a pyridinium ion, hydrolysis of which yields \(\alpha\)-aminoacrylate. Further hydrolysis of this intermediate furnishes ammonia and pyruvate.
SUPPLEMENTARY FIGURES, TABLES AND VIDEOS

LEGENDS

Supplementary Figure 1

S1. *M. pudica* seedlings germinated on agar showing the single tap root that emerges.

Supplementary Figure S2.

S2. Representative headspace gas analysis assembly used to sample the gases produced by *M. pudica* seedlings.

Supplementary Figure S3.

S3. Glass growth chamber apparatus designed to sample and detect the headspaces gases of root versus aerial parts of *M. pudica* seedlings independently. The experiment was conducted under sterile conditions. Panel a: pyrex glass tube showing the plug of agar suspended in the middle; Panel b: top down view of 3-day old *M. pudica* seedling deposited on the surface of the agar; Panel c: side view of apparatus showing that the root of the seedling had emerged from the bottom of the agar plug towards the water contained within the tube, without actually touching it. The root headspace could be sampled by withdrawing the water using a syringe, and inserting a PDMS SPME fiber which, after adsorption of headspace constituents, was analyzed by DART-HRMS.

Supplementary Figure S4.

S4. Determination of odor emission in stimulated and unstimulated roots by a five-person untrained human panel. Seedling roots were exposed to one of five stimuli (i.e. a human finger, wood, glass, soil and stainless steel) as illustrated in Supplementary videos SV1 and SV2.
the untouched, human touch, wood, glass, soil, and metal experiments, the percentage of panelists with a positive response (indicating that they experienced an odor) was 45 ± 30; 85 ± 19; 35 ± 19; 10 ± 20; 100 and 35 ± 25 percent respectively. For each stimulus, each panelist was exposed to five seedlings.

Supplementary Figure S5

S5. Typical results obtained for the GC-MS analysis of the headspace of *M. pudica* roots. Panel a: gas chromatogram showing two components; Panel b: EI mass spectrum of the GC component that appeared at a retention time of 1.36 min. The mass spectrum indicates that the compound is carbon disulfide.

Supplementary Figure S6

S6. Light microscopy image of portion of an *M. pudica* seedling root at 6X magnification, showing hair-like structures that appeared in clusters along the root shaft.

Supplementary Figure S7

S7. cSEM micrograph with EDS analysis of a section of a *M. pudica* root. The segment below the diagonal line had been tapped once with a finger while that above the line had not. The root sample was flash frozen at liquid N$_2$ temperature immediately after an odor was detected. The cSEM micrograph (top panel) shows an *M. pudica* root section which, prior to being touched, was observed by optical microscopy to be heavily populated with glandular hairs on both sides. The micrograph shows that consistent with previous observations, the hairs on the touched side of the root had collapsed. The EDS spectra for the indicated inspection fields (1, 2 and 3) are shown in blue (bottom panel) with the observed elements indicated (by relative weight %).
Supplementary Table S1

Table S1. Mass measurements for the positive- and negative-ion mode DART-HRMS spectra of the headspace of a 7-day old *M. pudica* seedling in the absence of an odor producing stimulus.

Supplementary Table S2

Table S2. Mass measurements for the negative-ion mode DART-HRMS spectra of the headspace of untouched root and aerial parts of a 7-day old *M. pudica* seedling.

Supplementary Video 1

SV1. Demonstration of how to elicit emission of odor compounds from an *M. pudica* root by exposure of the root to human skin.

Supplementary Video 2

SV2. Demonstration of how to elicit emission of odor compounds from an *M. pudica* root by exposure of the root to soil.

ACKNOWLEDGEMENTS

The authors are thankful to Marek Domin for helpful discussions regarding SPME experiments, to Justine Giffen for filming the videos and assisting with germination of the seedlings for the odor panel experiments, and to Donna Guarrera for assistance with the X-ray fluorescence measurements.

Downloaded from www.plantphysiol.org on January 27, 2016 - Published by www.plant.org
Copyright © 2015 American Society of Plant Biologists. All rights reserved.
LITERATURE CITED

Netzly DH, Butler LG (1986) Roots of Sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26: 775-778

Figure 1. Typically observed DART-HRMS positive- and negative-ion mode spectra of the headspace of 7-day old *M. pudica* seedlings in the absence of an odor producing stimulus. In each case, a SPME fiber was exposed to the headspace for 5 min, and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the observed HR elemental compositions and isotope data obtained, as well as the results of comparisons of the fragmentation patterns observed for standards under in-source CID conditions, to that of the headspace samples also obtained under in-source CID conditions. Detected compounds were observed in their protonated or ammoniated forms. The mass measurements and relative peak abundances associated with the data shown here are presented in Table S1.
FIGURE 2

Head-to-tail plot of the typically observed negative-ion mode DART-HRMS of the headspace gases produced by the root (top spectrum) and aerial part (bottom spectrum) of a 1-week old *M. pudica* plant. The aerial and root parts were separated by an agar partition within a Pyrex tube. In each case, a SPME fiber was exposed to the headspace gases for 5 min, and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the observed HR elemental compositions and isotope matching data, as well as the results of in-source CID experiments. The mass measurements and relative peak abundances associated with the data shown here are presented in Table S2.
Figure 3. Head-to-tail plot of the typically observed positive-ion mode DART-HRMS of the headspace gases produced by stimulated roots of: (1) 1-week old (Panel a); and (2) 3-month old (Panel b) M. pudica plants. In each case, a SPME fiber was exposed to the headspace gases for 5 min, and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the HR elemental compositions and isotope data obtained. Detected compounds were observed in their protonated or ammoniated forms. The mass measurements and relative peak abundances associated with the data shown here are presented in Table S3.
Figure 4. Head-to-tail plot of the typically observed negative-ion mode DART-HRMS of the headspace gases produced by the roots of 1-week old (Panel a) and 3-month old (Panel b) *M. pudica* seedlings after stimulation. In each case, a SPME fiber was exposed to the headspace gases for 5 min and the fiber was then analyzed by DART-HRMS. The structures shown are consistent with the observed HR elemental compositions and isotope data obtained. Detected compounds were observed in their deprotonated forms. The mass measurements and relative peak intensities associated with the data shown here are presented in Table S4.
Figure 5. Differences in ion counts for some of the DART-HRMS detected compounds emitted from untouched and touched roots (depicted in blue and red respectively). The data represent the average of three replicates of the actual DART-HRMS derived ion counts at each of the m/z values shown, and the ion counts reflect the amounts of the observed ions. Mass-to-charge ratios are only shown for molecules whose touched and untouched ion counts were different within experimental error. The errors were no more than ±5% in all cases. The chemical species represented by the nominal m/z values are the deprotonated forms of propanesulfenic acid (m/z 91), 2-aminothiophenol (m/z 124), S-propyl propane-1-thiosulfinate (m/z 165), and phenothiazine (m/z 198). The identity of the molecule represented by m/z value 239 is unknown. The “Totals” bars represent the summation of total ion counts for all the indicated m/z values for the unstimulated (blue) and stimulated (red) roots respectively.
Figure 6. Representative cryo SEM (cSEM) micrographs of *M. pudica* seedling roots. Panel a: A segment of a root showing a high density of hair-like protuberances. Panel b: Expansion of the boxed area shown in Panel a. Panel c: A segment of the same root shown in Panel a, that was distal to that appearing in Panel a, in which the population of protuberances is sparse. Panel d: A touched segment of a root shaft that was previously shown by light microscopy to have protuberances. The protuberances had collapsed. Observed protuberances were 100—200 μm in length.
Figure 7. Representative cryo SEM (cSEM)-electron dispersive spectroscopy (EDS) micrograph of a section of a *M. pudica* seedling root densely populated with hairs that are flattened (as opposed to turgid) under the high vacuum conditions of the analysis. Panel a: The hue of the image reflects the composite of the overlaid color-coded contributions of the elements C, N, O, Mg, P, S, Cl, K, and Ca. Panel b: X-ray maps of each of the color coded elements contributing to the color composite shown in Panel a. Whereas in some cases, such as for C, N and O, there is uniform elemental distribution, the concentrations of Cl and K are significant enough in some of the hairs that a general outline reflecting the topology of those hairs in the cSEM image is revealed in their maps. Panel c: Elemental composition map sum spectrum of the cSEM image shown in Panel a. The relative percentage contributions by weight % are listed and show that besides C, N and O, K and Cl are present at the highest relative concentrations.
Figure 8. cSEM micrograph with EDS analysis of a section of a *M. pudica* root the left side of which had been touched with a finger. The root sample was flash frozen at liquid N\textsubscript{2} temperature immediately after an odor was detected. The cSEM micrograph (top panel) shows an *M. pudica* root section which, prior to being touched, was shown by optical microscopy to be heavily populated with glandular hairs on both sides. The micrograph shows that consistent with previous observations, the hairs on the touched side of the root had collapsed. A few flattened sacs can be seen on the right side. The EDS spectra for the indicated boxed inspection fields indicated in the micrograph are shown in blue (bottom panel) with the observed elements indicated (by relative weight %).
Figure 9. Proposed mechanism for cysteine lyase-mediated degradation of djenkolic acid. In the first step, a Schiff base forms between djenkolic acid and the enzyme-derived pyridoxal phosphate (PALP). Enzyme promoted proton abstraction from an α-carbon in the djenkolic acid-PALP complex ultimately results in liberation of thioformaldehyde, cysteine and a pyridinium ion, hydrolysis of which yields α-aminoacrylate. Further hydrolysis of this intermediate furnishes ammonia and pyruvate.

Netzly DH, Butler LG (1986) Roots of Sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26: 775-778

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title